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A
rtificial intelligence (AI) is a rapidly evolv-
ing technology with enormous economic 
potential. According to a recent McKin-
sey report, new generative AI tools could 

contribute trillions of dollars to the global economy 
by 2040 through productivity growth (Chui et al., 
2023). This potential is reflected in the growing inter-
est in AI tools by the private sector, as evidenced 
by the increase in mentions of “generative AI” in 
global corporate earnings call transcripts from just 
five in December 2022 to 390 in June 2023 (FactSet, 
undated). Recent suggestions that there has been a 
surge in demand for workers with AI skills indicates 
that AI is already creating job opportunities (Acemo-
glu, Autur, et al., 2022).

However, with these opportunities comes con-
cern. Recent reports show that more than 4,000 
jobs were cut in the U.S. labor market in May 2023 
because of AI (Challenger, Gray, and Christmas, Inc., 
2023), which raises questions about the impact of AI 
on workers and labor markets. Some estimates sug-
gest that a significant portion of work activities could 
be automated over the next several decades (Chui 
et al., 2023; Eloundou et al., 2023). Additionally, the 
distinct features of AI suggest that its effect on the 
job market might deviate from that of prior waves of 
automation (Brynjolfsson and McAfee, 2014). Specifi-
cally, unlike previous technologies, AI can automate 
tasks that were previously considered hard to codify, 
which creates the potential for a broader variety of 
tasks and occupations to be automated (Manyika 
et al., 2017; Brynjolfsson, Mitchell, and Rock, 2018; 
Chui et al., 2023; Eloundou et al., 2023; Webb, 2019). 
However, exposure to AI does not necessarily lead 
to labor market displacement; technologies might 

KEY FINDINGS
 ■ By 1989, all occupations were exposed to 

technology patents to some extent, and 
there are no occupations in the United 
States that are completely unexposed to 
general technology patents.

 ■ Work tasks that are typically carried out less 
frequently have the highest technology pat-
ent exposure. 

 ■ By 2020, nearly all occupations had been 
exposed to technology patents involving arti-
ficial intelligence (AI), defined as the ability of 
computers and machines to simulate human 
intelligence, to some degree, but the level of 
exposure varies across occupation groups, 
time frame, and technology categories. 

 ■ In 2019, up to 15 percent of workers were 
employed in occupations that were highly 
exposed to AI technologies.

 ■ The nature of occupational exposure to 
technology patents has changed over time. 
In contrast to earlier decades, occupations 
that require more education and pay higher 
wages have become more exposed to tech-
nology patents in general.

 ■ Greater exposure to natural language pro-
cessing, speech recognition, and evolution-
ary computation technology patents is asso-
ciated with declines in employment growth 
occupations that specialize in more-routine 
tasks.
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reduce the cost of hiring and create new job oppor-
tunities for some workers. Consequently, there is a 
growing need for research to understand the impli-
cations of AI on workers, firms, and markets. In 
this report, we focus on the United States, but these 
results are broadly applicable to other countries. 

To address this pressing need, we aim to answer 
the following research question: What is the rela-
tionship between (1) an occupation’s exposure to 
general and specific AI-related technologies and 
(2) wages, and employment? Using a methodology 
that identifies the exposure of occupational tasks to 
relevant technology patents, we provide insights into 
the potential implications of AI on the labor market 
and inform policy discussions around this emerg-
ing issue. More specifically, we use natural language 
processing (NLP) to identify semantic similarities 
between job task descriptions and technology patents 
awarded between 1976 and 2020.1 We contribute 
to the growing literature in this area by evaluat-
ing occupation exposure to various AI technology 
categories, including computer vision, evolutionary 
computation, AI hardware, knowledge processing, 
machine learning, NLP, planning and control, and 
speech recognition.2 We also provide new insights 
into dynamics in exposure over time by identifying 
the types of occupations that have become more (or 
less) exposed to different forms of technology over 
the past 40 years. We define exposure as using the 
technology to perform occupational tasks.

Our findings suggest that, in the United States, 
exposure to all technology patents—as well as to AI-
specific patents—is not uniform across occupational 
groups, over time, or across AI technology categories. 
For instance, occupations that are the most exposed 
to speech recognition and NLP technologies gener-
ally involve communication, writing, and active 
listening, while the occupations most exposed to 
planning and control AI generally involve business 
and finance. However, several broad patterns emerge. 
In general, occupations that require more educa-
tion and cognitive skills have become more exposed, 
while those that require manual labor have become 
less exposed. Many of the occupations that are cur-
rently highly exposed to AI technologies are the 
same occupations that are expected to grow over the 
coming decade. Moreover, the relationship between 

wage distribution and exposure has changed over 
time, with the highest exposure being associated with 
occupations in the upper end of the wage distribu-
tion, as of this writing. Overall, we estimate that up 
to 15 percent of workers were highly exposed to AI 
technology patents by 2019.

We also estimate a series of regressions aimed 
at better understanding the correlation between 
technology exposure (to general and AI patents) 
and employment growth. Although we do not find 
evidence of a statistically meaningful correlation 
between general technology patent exposure and 
employment growth, we do find that exposure has 
a positive correlation with employment growth for 
some AI technology categories. However, we also find 
that the correlation with employment growth can 
depend on the relative importance of routine tasks 
compared with nonroutine tasks (routine intensity) 
within the occupation. For example, for less routine-
intensive occupations, exposure to NLP, speech rec-
ognition, and evolutionary computation has a posi-
tive correlation with employment growth since 1990. 
However, for more routine-intensive occupations, the 
correlation between exposure to these technologies 

LIMITATIONS
 ■ The matching was done using one large 

language model (LLM), and the results could 
change if a different model were used.

 ■ We do not assess changes to the task struc-
ture within occupations, which could also 
respond to exposure to technology.

 ■ Our analysis does not extend past 2020, 
and, as a result, we do not account for pat-
ents granted over the past several years.

 ■ Some new technologies, such as ChatGPT, 
do not have a patent. Instead, our findings 
are based on an academic research report. 
As a result, our analysis does not include all 
forms of modern AI technology platforms.

 ■ Our analysis does not assess technology 
adoption because patents might not trans-
late into actual technology development and 
adoption by employers. 
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and employment growth is negative. This finding 
suggests that technology can either substitute for or 
complement worker tasks. Specifically, technology 
might increase the productivity of some workers and 
allow firms to expand hiring in some areas while 
simultaneously replacing other workers that tend to 
specialize in more-routine tasks. Additionally, this 
finding differs from the presumption that occupa-
tions that specialize in more-complex cognitive 
tasks might be at greater risk of disruption from AI 
because the ultimate employment impact depends on 
whether the AI technology is complementary with or 
substitutable for the worker’s tasks. Although we have 
not yet witnessed the full labor market effect of AI, so 
far, the occupations that have seen job loss tend to be 
more routine in nature. 

Although this report sheds light on the relation-
ship between technological progress and the labor 
market, our analysis has several important limita-
tions. Primarily, we do not assess changes to tasks 
within occupations; instead, we focus our analysis 
on changes in the exposure of various occupations’ 
existing task structures, as of the time of this writ-
ing. This introduces a potential source of endogeneity 
because technology might change the task content of 
occupations, which would make some tasks more or 
less important relative to others. However, our results 
are consistent with those in the prior literature on the 
effect of technology in the labor market. Overall, the 
results of the analysis should be considered correla-
tive rather than causal.

This study contributes to several lines of exist-
ing research. There are a handful of studies that use 
patent-task matching methods to measure technol-
ogy exposure. These studies use a variety of methods 
to evaluate the similarity between U.S. patents and 
job task descriptions. For example, Webb (2019) uses 
verb-noun pair matches, Montobbio et al. (2021) uses 
a “bag of words” approach, and Kogan et al. (2021) 
uses word embeddings. We use a version of the Bi- 
directional Encoder Representations from Trans-
former (BERT) developed by Google that has been 
fine-tuned specifically for patent analysis. Using 
BERT for Patents allows us to achieve better text sim-
ilarity matches than such methods as verb-noun pair 
matching because BERT attends to the whole input 

sequence instead of using the previous sequence of 
words to predict the next word.

We also contribute to the growing literature 
on the labor market implications of AI. Over the 
past several years, several studies have estimated 
that many occupations are exposed to AI technol-
ogy. Early research used expert elicitation to iden-
tify occupations exposed to emerging technology 
and found that 47 percent of employment is at risk 
of displacement because of computerization (Frey 
and Osborne, 2017). More recently, Eloundou et al. 
(2023) used expert elicitation and Generative Pre-
trained Transformer 4 (GPT-4) to identify exposure 
to LLMs.3 The authors of that report estimate that 
80 percent of the U.S. workforce could see 10 per-
cent of their work tasks automated by LLMs. Webb 
(2019) used patent-task matching to identify occupa-
tions exposed to AI, broadly defined, and found that 
higher-wage occupations were more exposed. We 
contribute to this literature by assessing exposure to 
several different forms of AI technologies, tracing 
out exposure over the past several decades, and esti-
mating how exposure correlated with employment 
growth. 

Finally, this report contributes to the large litera-
ture on the role of technology in the labor market. 
Prior research has found evidence that more-routine 
occupations are typically at greater risk of displace-
ment because of technology. For instance, Autor, 
Levy, and Murnane (2003) found that computeriza-
tion is associated with declines in the routine and 
manual tasks of labor but an increase in nonroutine 
cognitive tasks. Other studies found a similar rela-
tionship between technology and the composition of 
the labor force in which technological growth is asso-
ciated with job growth among nonroutine cognitive 
tasks and job loss among routine tasks (Autor, 2015). 
Lastly, recent research used administrative data to 
show that larger firms typically adopt automation 
technologies and, consistent with prior work, found 
that adopting firms have higher productivity but 
lower labor shares (Acemoglu, Anderson, et al., 2022).

The organization of this report is as follows. 
First, we discuss our process of matching patent titles 
to job task descriptions. Then, we discuss how we 
aggregate the patent-task matches to occupation-level 
exposure scores and use these scores to evaluate how 
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exposure has evolved over time and across occupa-
tions. Lastly, we use employment and wage data to 
assess the correlations between exposure and labor 
market outcomes.

Datasets Used

In this section, we discuss the datasets used to con-
struct patent-task matches. The Occupational Infor-
mation Network, or O*NET, managed by the U.S. 
Department of Labor, provides detailed information 
on job duties for different occupations. The second 
dataset is the U.S. Patent and Trademark Office 
(USPTO) dataset, hosted on PatentsView, which 
contains approximately 8 million patents awarded 
from 1976 to 2021. We also use the AI Patent Data-
set (AIPD), which categorizes AI patents into eight 
different types using machine-learning algorithms 
validated by patent examiners, and data from the 
U.S. Census and the American Community Survey 
(ACS). We collect data on wages and employment for 
the years 1980, 1990, 2000, 2010, 2019, and 2020 from 
these sources. 

O*NET Dataset

Each occupation requires a specific set of tasks. Each 
occupation’s characteristics are described in O*NET, 
which includes information on job duties (e.g., tasks), 
skills, education and training requirements, earnings, 
and job outlook. The data are regularly updated, and 
we use the version of the O*NET data from August 
2022 for the following analysis. O*NET was the logi-
cal choice as a source for task-level information for 
each occupation because it describes tasks that are 
core, more frequent, more relevant, and most impor-
tant in each occupation.

O*NET has updated the work tasks database 
semi-regularly since 2003 but does not update all 
occupations at the same time. For instance, in the 
August 2022 release, some occupations’ tasks were 
last updated in 2004, while others were updated 2022. 
In total, 50 percent of occupation tasks were last 
updated in 2018 or earlier. 

The use of the August 2022 O*NET database 
has important implications for our analysis, which 
focuses on the exposure of current tasks. That is, we 
do not assess whether patent exposure is associated 
with changes to the task structure of occupations. 
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Linking O*NET data over time is challenging. The 
survey solicits responses from both occupational 
experts and workers, resulting in irregular updates 
to each occupation’s information and variations in 
the types of responses received (Lopez Garcia, Mae-
stas, and Mullen, 2020). Additionally, given that new 
technologies can take decades to affect the labor 
market (Webb, 2019; Kogan et al., 2020; Meindl, 
Frank, and Mendonça, 2021), it is not clear whether 
earlier versions of the O*NET would be better suited 
for our analysis.

Patent Datasets

We use two separate USPTO datasets for our 
analysis. The first consists of the full set of all pat-
ents (whether or not they are AI-related) awarded by 
the USPTO from 1976 to 2021. The dataset contains 
approximately 8 million patents, which are hosted 
by PatentsView, an open data platform that provides 
tools and data on patents to foster research and 
insights into invention and innovation. PatentsView 
offers patent visualizations, a community forum, an 
Application Programming Interface, a data query 
builder, and bulk data downloads. The platform 
was developed through a collaboration between the 
USPTO, research organizations, and private com-
panies and is supported by the Office of the Chief 
Economist at the USPTO.

The other patent dataset used is the AIPD. 
In Giczy, Pairolero, and Toole (2022), the authors 
describe this dataset by using a machine learning 
algorithm to identify and bin USPTO patents into 
eight AI categories:

• computer vision—methods to understand 
images and videos

• evolutionary computation—methods mim-
icking evolution to solve problems

• AI hardware—physical hardware designed 
specifically to implement AI software

• knowledge processing—methods to represent 
and derive new facts from knowledge bases

• machine learning—algorithms that learn 
from data

• NLP—methods to understand and generate 
human language

• planning and control—methods to determine 
and execute plans to achieve goals

• speech recognition—methods to understand 
speech and generate responses.

The model classification was validated by com-
paring its results with the manual annotations from 
patent examiners with AI expertise, and it achieved 
high performance when compared with existing 
studies. In the following analysis, we use both the full 
USPTO database and the subset of AI technologies in 
the AIPD.

Patent–O*NET Matching Methodology

Our goal is to match the approximately 8 million 
patents in the USPTO dataset with the almost 18,000 
unique tasks in the O*NET database. Because we use 
text data, we take advantage of NLP algorithms. To 
implement any NLP application, texts first need to be 
converted into a numeric representation to run math-
ematical operations (Goodfellow, Bengio, and Cour-
ville, 2016). When words are converted into vectors of 
numbers, they are called embeddings. The embedding 
vectors are then used in different NLP tasks, such as 
text classification, sentiment analysis, and question 
answering. Embeddings have been shown to be very 
effective for a variety of NLP applications and are one 
of the most important innovations in NLP in recent 
years (Mikolov et al., 2014).

There are different ways of generating embed-
dings. Many embedding models have been used to 
address the problem of matching patent data with the 
O*NET dataset (Wang, Zhao, and Jiang, 2020). We 
have chosen to use embeddings that take advantage 
of transformers architectures,4 which in turn takes 
advantage of the attention concept, developed by Vas-
wani et al. (2017). Attention allows the model to learn 
long-range dependencies between different parts of 
the input sequence that other neural networks strug-
gle with (e.g., recurrent neural networks). 

More specifically, attention allows a language 
model to understand the meaning of a word based on 
the words around it. It works by examining all pos-
sible pairs of words in a sentence to determine how 
each word is related to all the other words, including 
itself (Rothman, 2021). This helps the model under-
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stand the context of words and how they relate to 
each other. For instance, the word “bank” can have 
different meanings depending on the context in 
which it is used. Attention helps the model under-
stand the context by associating each word with other 
words that regularly appear together. This allows the 
model to differentiate between different meanings of 
the same word, such as “financial bank,” “bank of a 
river,” and “banking airplane.” By understanding the 
relationships between words, the model can better 
understand the meaning of a sentence and perform 
more-accurate NLP tasks.

Transformers have had a significant impact on 
the field of NLP. They have been used to achieve 
state-of-the-art results for a wide variety of tasks, 
including machine translation, text summariza-
tion, sentence similarity, and question answering, 
and they are fundamental to the success of LLMs, 
such as ChatGPT (OpenAI, undated), Bard (Google, 
undated), and Claude (Anthropic, undated).

To match patents with O*NET tasks, we employ 
the NLP concept of sentence similarity, which 
allows us to measure how similar two sentences or 
phrases are.

Our algorithm, which is illustrated in Figure 1, is 
composed of the following steps:

1. From the occupation dataset, compile a list 
of tasks for every occupation and a list of all 
patent titles from the patent dataset.

2. Select the embedding model: 

a. To generate embeddings, we have chosen 
the BERT, which is a pretrained language 
model developed by Google that attends to 
the whole input sequence instead of using 
the previous sequence of words to predict 
the next word. BERT is based on the trans-
former architecture introduced in Vaswani 
et al. (2017).

b. LLMs can be fine-tuned for a specific task 
or topic, which can lead to significant 
improvements in performance on the task 
or topic downstream. With that in mind, 
we searched for and found a BERT model 
that was fine-tuned on patents. BERT for 
Patents is fine-tuned on more than 100 mil-
lion patents and the multiple texts per-
taining to the patent, such as the abstract, 
claims, and description, which ensures that 

FIGURE 1

Patent and Occupations Matching Algorithm

Patent dataset

Patent 1

Patent 2

(…)

Engineer

Plumber

(…)

Tasks

Patent 
titles

Score pairwise 
embedding 

comparisons 

Dataset of tasks 
with patents with 
highest scores

LLM 
(BERT)

Task 
embeddings

Patent 
embeddings

Occupation dataset

NOTE: Both the patent titles and the occupation tasks are embedded using the same model, and we generate a task embedding list and 
patents embedding list before we pairwise compare every task and patent. The comparison is done ef�ciently using a nearest neighbor 
algorithm.
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it will have a better matching performance 
than the base BERT model.

3. Generate the embedding for both the task and 
the patent lists: Use the selected model to gen-
erate a numerical representation of the patent 
titles and the O*NET task descriptions.5

4. Compare the embeddings using a preselected 
metric and give the pairwise matches a score: 
The metric that we have selected is the cosine 
similarity, which is most used to compare two 
embeddings. 

Cosine Similarity Metric

We use the cosine similarity metric to measure the 
semantic closeness of a match between task and 
patent. The process of generating embeddings for the 
tasks and patents results in multidimensional vec-
tors; therefore, we can perform linear algebra opera-
tions on them. Mathematically, cosine similarity is 
just the process of calculating the cosine between 
any two vectors, which varies from –1 to 1, where a 
score of 1 would imply a complete match, a score of 
–1 would imply a completely opposing meaning, and 
a score of zero would imply that the embeddings are 
not related at all. Cosine similarity is a popular mea-
sure of similarity in NLP because it is computation-
ally efficient, easy to interpret, and invariant to the 
length of the vectors.

Datasets Matching Results

We present the results of the matching between 
patents and occupational tasks in Table 1. Using the 
methodology described previously, the results of the 
matching indicate, in most cases, significant align-
ment between the task and patent. The table presents 
examples of several selected tasks for particular occu-
pations and the top four patent title matches. (The 
tasks presented in this table were chosen at random.) 
It is important to note that the matchings are done 
on a contextual basis, which means that the LLM 
associates words that frequently appear together. For 
example, if we look at the first task in Table 1, we 
see that the first task is related to lifting, slings, and 
hooks, and therefore the LLM and the algorithm will 

match technology patents that involve slings, lifting, 
and hooks irrespective of the true match quality.

Measuring Occupation Exposure 

In this section, we explore several dimensions of 
how exposure to technology patents varies across 
occupations and over time. Understanding differ-
ences in exposure is critical for assessing the poten-
tial implications of AI and automation for the labor 
market. We begin by evaluating how patent-task 
matches differ by the similarity threshold used, as the 
chosen threshold affects the number and quality of 
matches. Next, we examine whether certain types of 
tasks tend to attract more patent matches. We then 
aggregate the patent-task matches to the occupation 
level and analyze exposure differences across occu-
pations, skills, education requirements, and routine 
task intensity. Evaluating exposure by routine task 
intensity allows us to connect our analysis to prior 
research on how routine versus nonroutine tasks 
have been affected by technology. Tracing out expo-
sure over time provides insights into how exposure 
has evolved across occupations. Overall, analyzing 
the different dimensions of exposure is essential for 
understanding where and how new technologies 
might affect the workforce.

Differences in Patent-Task Matches by Cosine 
Similarity Threshold

We begin by assessing which tasks are the most 
exposed to general technology patents. Specifically, 
we calculate the total number of patent matches per 
task from 1976 to 2020 for two cosine similarity 
thresholds, 0.75 and 0.80.6 Task-patent matches with 
cosine similarity values below these thresholds are 
not counted as a match, while matches above them 
are. The rank correlation between the total number 
of patent-task matches between 1976 and 2020 across 
the two thresholds is 0.83. 

Figure 2 shows the distribution of patent-task 
matches for each threshold. For both thresholds, 
there are a significant number of tasks with zero 
patent matches. Some tasks with zero patent matches 
over the sample time frame include more-abstract 
tasks, such as adhering to local, state, and federal 
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laws, and asking speakers to clarify topics. Apart 
from the mass at zero, the distribution of task 
matches differs between the two thresholds. Specifi-
cally, the 0.75 threshold distribution is truncated at 
the upper end, while the 0.80 threshold has a more 
normal distribution. This truncation is because of a 
200-match limit per task that we set in the matching 
algorithm, and, given the lower similarity thresh-
old, this limit is more likely to be met with the 0.75 
threshold. Overall, there are many more patent-task 
matches under the 0.75 threshold. To be conservative, 
we use the 0.80 similarity threshold in the following 

analysis even though the results are all qualitatively 
similar using the 0.75 threshold.

Patent Matches by Task Frequency

To explore which types of tasks are the most exposed 
to patents, we use data from O*NET on the frequency 
with which the task is commonly performed. For 
each task, O*NET reports whether it is typically per-
formed yearly or less frequently, more than yearly, 
more than monthly, more than weekly, daily, several 
times per day, or hourly or more. These frequency 
categories are mutually exclusive. We count the 
total number of patents per task in each frequency 

TABLE 1

Top Four Patent Matches for a Few Selected Occupational Tasks
Occupation Task Title of Top Patent Matches (Cosine Similarity)

Fishing and hunting 
workers

Attach nets, slings, 
hooks, blades, or 
lifting devices to 
cables, booms, 
hoists, or dredges.

• Rope and a mooring device, particularly for clamping goods, mooring ships, 
and anchoring floating landing stages, buoys, navigation marks, etc. (0.78).

• Method and device for attaching and removing an additional device to the 
main boom of a mobile crane (0.77).

• System for lifting, moving, and transporting a vehicle via multiple slings 
connected to a common lifting vertex, and method of retrofitting a vehicle to 
facilitate lifting (0.76).

• Method of retrieving and securing anchors, fish traps, and lobster pots (0.76).

Maintenance and 
repair workers, 
general

Assemble, 
install, or repair 
wiring, electrical 
or electronic 
components, pipe 
systems, plumbing, 
machinery, or 
equipment.

• Method for joining piping systems and piping to equipment, fixtures, devices, 
structures, and appliances (0.82).

• Hole protector device for mechanical, plumbing, and electrical systems (0.77).
• Method and machine for installing electrical box, wiring, and receptacle, or 

switch simultaneously (0.76).
• Device, system, and method for the location and identification of as-built 

plants of pipes, conduits, cables, or hidden objects (0.76).

Gambling and 
sports book writers 
and runners

Deliver tickets, cards, 
and money to bingo 
callers.

• Method for using a camera phone to acquire, store, manage, and redeem 
discount coupons (0.77).

• Method and apparatus for using greeting cards distributed with electronic 
commerce transactions as pick tickets (0.77).

• System to offer coupons to fans along routes to game (0.76).

Photonics engineers Design or develop 
new crystals 
for photonics 
applications.

• Design and synthesis of advanced nonlinear optics materials for electro-optic 
applications (0.88).

• Methods for synthesizing semiconductor quality chalcopyrite crystals for 
nonlinear optical and radiation detection applications, etc. (0.86).

• High-quality-factor photonic crystal nanobeam cavity and method of 
designing and making same (0.85).

• Method and structure for stub tunable resonant cavity for photonic crystals 
(0.85).

Materials scientists Research methods of 
processing, forming, 
and firing materials 
to develop such 
products as ceramic 
dental fillings, 
unbreakable dinner 
plates, and telescope 
lenses.

• Method and compositions for producing lifelike dental porcelain restorations 
and dental porcelain restorations so produced (0.81).

• Method of fabricating high-light-transmission zirconia blanks for milling 
dental appliances into a natural appearance (0.81).

• Method for producing pieces that are in high mechanical demand, especially 
tools made of low-cost ceramics or polymers (0.81).

• Methods for enhancing optical and strength properties in ceramic bodies that 
have applications in dental restorations (0.81).

SOURCE: Occupations and task descriptions come from the O*NET dataset.

NOTE: Results from O*NET task and all the patent titles were matched using the algorithm developed by the authors, which uses NLP. 
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category (the results are plotted in Figure 3). The 
figure shows that the distribution of patents per task 
is skewed toward less frequent tasks. Specifically, 
tasks that are performed more than yearly and more 
than monthly have the highest exposure, while those 
typically performed at higher frequencies have lower 
exposure. There are over 5,000 tasks that fall into the 
frequency categories of more than yearly and more 
than monthly, and these tasks span a wide variety of 
activities. In total, approximately 30 percent of tasks 
fall into these two frequency categories. 

Aggregation of Patent-Task Matches to 
Occupation Level

Next, we aggregate the patent-task matches to the 
occupation level using the task importance measures 
provided by O*NET. Specifically, for each occupation 
o in year t, we calculate:

exposureot   =  ∑
i∈O

   100 * (
patentsit_

∑ ipatentsit

  ) * importanceio  ,

FIGURE 2

Distribution of Patent-Task Matches by Similarity Threshold

where  patentsit    is the number of patent-task matches 
for task I in year t, and  importanc  eio    is the impor-
tance value assigned to task i for occupation o in the 
O*NET-26 database.7 Importance values range from 
one to five and are based on ratings from workers 
in the occupation or occupational experts. We scale 
the number of patent-task matches for task i in year 
t by the total number of patent-task matches in year 
t to account for the fact that the number of patents 
grows over time. We sum this measure over all tasks 
in occupation o to create an occupation-level measure 
of exposure. O*NET provides additional measures 
of task importance, like the relevance of the task to 
the occupation and the frequency with which the 
task is performed in the occupation. We test the dif-
ferences in exposure based on these occupation-task 
measures and find that they are all highly correlated. 
For instance, the correlation between exposure using 
O*NET’s measure of task importance and using the 
measure of task relevance is 97 percent. 
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Exposure to Technology over Time

As of 2022, we find that 87 percent of occupations 
have some exposure to technology patents in 1976 
and that all occupations have some exposure to tech-
nology patents by 1989. However, the most-exposed 
occupations vary over time. Figure 4 displays the 
top ten most exposed occupations in 1980, 2000, 
and 2020. In the figure, we measure exposure as 
the cumulative exposure up to the years listed. For 
instance, cumulative exposure in 2000 is calculated 
as: 

 Cumulative   Exposure  o,2000   =  ∑ t=1976  
T=2000  exposur e  ot    .

The figure highlights how some highly exposed occu-
pations in the 1980s become relatively less exposed 
by 2020. For instance, textile operators were the 
most exposed occupation in 1980, the second most 
exposed in 2000, and the seventh most exposed in 
2020, which indicates that the patents related to the 
tasks in this occupation did not grow as much as 

patents related to tasks in other occupations. Of the 
top ten most exposed occupations in 1980, only three 
remained in the top ten most exposed by 2020. 

Figure 4 also shows which occupations are cur-
rently bright-outlook occupations, as classified by 
the 2022 version of the O*NET (denoted by the violet 
shading). Bright-outlook occupations are projected to 
grow faster than the average occupation in terms of 
employment over the next decade or to have at least 
100,000 job openings over the next decade. There are 
relatively few occupations that were highly exposed 
in 1980 that have a bright outlook as of 2022. How-
ever, the majority of the most-exposed jobs in 2020 
have a bright outlook. 

Skill Exposure

Next, we merge our occupation exposure measure 
with O*NET’s skills data to calculate the change in 
exposure of different work skills over time. For each 
of the 35 skills listed in the O*NET, we calculate skill 
exposure as follows:

FIGURE 3

Patents per Task Frequency

SOURCES: Author calculations using O*NET and USPTO data. Task frequency categories come from the O*NET database.
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 Skill   Exposure  j   = 

 ∑ 
o
    (   Importance  jo   *   

Cumulative   Exposure  o    __________________   ∑ o   Cumulative   Exposure  o   
   )    .

where  Importanc e  jo    is the importance score for skill 
j for occupation o, and  cumulative   exposur eo       is the 
cumulative exposure of occupation o at a given time.8 
The resulting measure expresses the weighted aver-
age exposure of skill j to technology patents at a 
given time. 

Figure 5 displays the percentage change in 
skill exposure between 1980 and 2020. The figure 
highlights that growth in exposure differs across 
skills. For example, exposure of programming skills 
increased by over 10 percent. In contrast, the expo-
sure of equipment maintenance skills fell by over 

20 percent over this period. In general, the skills with 
negative exposure growth involve equipment main-
tenance, operation, repairing, and selection, while 
those that saw the positive exposure growth involve 
programming and soft skills, such as negotiation 
and persuasion. Other research has noted the grow-
ing importance of social skills in the labor market 
(Deming, 2017).

Exposure to Artificial Intelligence Technology

Using the same matching procedure and expo-
sure measures discussed above, we present the top 
ten most-exposed occupations in 2020 for each AI 
technology in Table 2. While there is overlap across 
columns, common themes emerge among the most-
exposed occupations. For instance, occupations that 

FIGURE 4

Top Ten Most-Exposed Occupations in Select Years

SOURCES: Author calculation from O*NET and USPTO data.

NOTE: Exposure is measured as the cumulative exposure to all patents up to the given year. Occupation names have been abbreviated from the original 
names in the O*NET database. Violet coloring indicates that the occupation has a bright outlook according to O*NET.

1   Search marketing strategists

2   Online merchants

3   Geological technicians

4   Web administrators
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Geothermal technicians
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FIGURE 5 

Change in Skill Exposure Between 1980 and 2020
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SOURCES: Author calculations from O*NET and USPTO data.
NOTE: Skill exposure is measured using the weighted average across occupations that use a given skill in their work tasks. 
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TABLE 2

Top Ten Occupations Most Exposed to AI Technologies

Computer Vision
Evolutionary 
Computation AI Hardware 

Knowledge 
Processing Machine Learning NLP

Planning and 
Control

Speech 
Recognition

GIS technologists 
and technicians

Nondestructive 
testing specialists

Search marketing 
strategists

Search marketing 
strategists

Audiologists Captioners Search marketing 
strategists

Captioners

Search marketing 
strategists

Machinists Information security 
analysts

Statisticians Statisticians Marketing 
strategists

Online merchants Special education 
teachers, 

secondary

Captioners Cytotechnologists Statisticians Geological 
technicians

Critical care nurses Special education 
teachers, 

secondary

Sales agents Interpreters and 
translators

Statisticians Ophthalmic 
technologists

Document 
management 

specialists

Audiologists Search marketing 
strategists

Speech and 
language pathology 

assistants

Clinical nurse 
specialists

Speech and 
language pathology 

assistants

Special education 
teachers, 

secondary 

Search marketing 
strategists

Web administrators Clinical nurse 
specialists

Geneticists Document 
management 

specialists

Treasurers and 
controllers

Search marketing 
strategists

Radiologic 
technicians

Statisticians Data warehousing 
specialists

Online merchants Speech and 
language pathology 

assistants

Interpreters and 
translators

Advanced practice 
psychiatric nurses

Speech and 
language 

pathologists

Physicians, 
pathologists

Geological 
technicians

Special education 
teachers, middle 

school

GIS technologists 
and technicians

Special education 
teachers, 

secondary 

English teachers, 
postsecondary

Bookkeeping clerks Hearing aid 
specialists

Document 
management 

specialists

Ophthalmic 
technicians

Telecom 
engineering 
specialists

Advanced practice 
psychiatric nurses

Special education 
teachers, middle 

school

GIS technologists 
and technicians

Web administrators Music directors and 
composers

Special effects 
artists and 
animators

Astronomers Special education 
teachers, 

secondary 

Web administrators Clinical nurse 
specialists

Speech and 
language 

pathologists

Claims adjusters English teachers, 
postsecondary

Speech and 
language 

pathologists

Substance abuse 
counselors

GIS technologists 
and technicians

Special education 
teachers, middle 

school

Captioners Telecom 
engineering 
specialists

Critical care nurses Statisticians

SOURCES: Author calculations from O*NET and AIPD data.

NOTE: GIS = geographic information systems. Exposure is measured as the cumulative exposure by 2020. Occupation names have been shortened from their original length in the O*NET database. Green cells 
indicate that the occupation has a bright outlook according to O*NET.
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are the most exposed to speech recognition and NLP 
technologies generally involve communication, writ-
ing, and active listening while the occupations most 
exposed to planning and control generally involve 
business and finance. 

In Table 2, we highlight bright outlook occu-
pations in green. There is variation in the share of 
bright-outlook occupations across technology catego-
ries. For example, nearly all of the occupations most 
exposed to planning and control and knowledge 
processing technologies have bright outlooks while 
only four of the occupations most exposed to evolu-
tionary computation have bright outlooks, according 
to O*NET data.

Exposure by Required Level of Education

Using O*NET’s educational requirements data, which 
provide information on the typical level of educa-
tion required per occupation, we calculate the aver-
age exposure by educational requirement groups. 
We group occupations into those that require less 
than a high school diploma, more than high school 

completion but less than a college degree, a bachelor’s 
degree, or an advanced degree and then calculate the 
average exposure in each year for each group.

Figure 6 displays the locally estimated scatter-
plot smoothing (LOESS) plot of exposure over time 
for each occupation group and technology. The first 
subgraph (“All Patents”) shows the results for all 
patents, which includes AI and non-AI patents. We 
find that in the early years of our sample, occupa-
tions that require less than a high school degree were 
the most exposed and those that require a college 
degree were the least exposed. However, by 2020, 
these trends are reversed, and occupations that 
require a college degree are the most exposed group. 
The exposure of occupations that require at least a 
college degree appears to have reached a maximum 
around 2010, while the exposure of occupations 
requiring an advanced degree still appears to be on 
an upward trajectory. 

The trends for AI technologies, shown in the 
other subgraphs of Figure 6, are all relatively similar. 
Occupations requiring less education are generally 
less exposed throughout the sample period, while 
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those requiring a college degree or advanced degree 
have become more exposed since the late 1990s. In 
all cases, occupations that require a college degree 
are the most exposed by 2020. In several instances, 
occupations that require an advanced degree were the 
most exposed group in the early part of the sample 
and have fallen in exposure since. This is particularly 
clear in knowledge processing and machine learn-

ing technologies, but also prevalent in planning and 
control and speech recognition. 

Task Inputs

Next, we explore the relationship between occupa-
tion exposure and task inputs. Task inputs are a 
characterization of the types of tasks required to be 
carried out by workers in the occupation. A relatively 

FIGURE 6 

Exposure by Technology and Required Education Level
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SOURCES: Author calculations using O*NET, AIPD, and USPTO data.
NOTE: This �gure shows the results of an LOESS regression of exposure over time for different technologies and different occupation education requirements. 
The y-axis shows the estimated exposure of an occupation, with higher values indicating greater exposure to technology patents. The LOESS uses a 0.80 bandwidth, as 
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large body of research has linked the labor displacing 
effect of automation in the 1980s and 1990s to the 
routineness of the tasks in the occupation because 
routine tasks were historically easier to automate 
than those that require abstract thinking, creativity, 
or those that require manual tasks that depend on 
dexterity and manipulation of objects (see Acemoglu 
and Autor [2011] for a review of this literature). For 
instance, Autor, Levy, and Murnane (2003) find that 
automation technology reduces demand for occupa-
tions with routine tasks and increases demand for 
those with more-abstract, problem-solving, and 
interpersonal-related tasks. 

We use the methods described in Autor and 
Dorn (2013) to create task input indexes. Using data 
from the O*NET-26, we update the code provided by 
Autor and Dorn (2013) to construct task input rat-
ings for nonroutine cognitive, nonroutine manual, 
routine cognitive, and routine manual tasks based 
on work activities, skills, work context, and abilities 
datasets provided by O*NET. We also construct mea-
sures of the offshoring potential of the occupation 
(how “offshorable” it is) from Autor and Dorn (2013). 
Offshorable occupations are those that require lim-
ited face-to-face contact and on-site work and could 
theoretically be performed in other countries without 
a significant loss of productivity (Firpo, Fortin, and 
Lemieux, 2011). We operationalize the offshorable 
measure by taking the average of the importance of 
face-to-face contact and on-site job requirements 
measures derived from the O*NET. See Autor and 
Dorn (2013) for a complete description of these mea-
sures and their calculation. 

With this data, we estimate the following regres-
sion separately for the years 1980, 1990, 2000, 2010, 
and 2020 and for each technology group:

 Cumulative   Exposure  o   =  
β  0  +  β  1   nonroutine   cognitive  o   + 
 β  2   nonroutine  manual  o   +  β   3   routine   cognitive  o   +
 β  4   routine  manual  o   +  β  5    offshorable  o   +  ϵ  o   

where Cumulative   Exposure  o    is the standardized 
(z-score) exposure of occupation o, and the task vari-
ables measure the task input indexes of occupation o, 
which are also measured in z-scores. The coefficients 
can be interpreted as the correlation between the task 

input indexes and the exposure of the occupation. 
For instance,   β  1    measures the relationship between 
how nonroutine cognitive occupation o’s tasks are 
and the exposure of occupation o to a given tech-
nology, controlling for the occupation’s other task 
inputs. The lack of time subscripts on variables in the 
equation is because of the separate estimations for 
each decade. 

Figure 7 displays the results. The x-axis displays 
the year, and the y-axis shows the estimated coef-
ficients and 95 percent confidence intervals. The 
results, which use all patent data, are shown in the 
top left subgraph. Here, the results suggest that there 
is a positive correlation between routine cognitive 
task inputs and patent exposure, and that the correla-
tion has grown in magnitude since the 1980s. On the 
other hand, the correlation between exposure and 
routine manual task inputs has fallen since the 1980s. 
The growth in the relationship between routine cog-
nitive tasks and exposure aligns with prior research, 
which has found that occupations with routine cog-
nitive tasks tend to be the easiest to automate with 
software and robotics (Autor, Levy, and Murnane, 
2003; Webb, 2019). 

For AI technologies, routine cognitive tasks are 
the most positively correlated with exposure and have 
remained the most correlated over time. Examples 
of occupations with a high degree of routine cogni-
tive tasks include bill and account collectors, tele-
phone operators, proofreaders, and nuclear power 
reactor operators. Machine learning technologies 
are an exception, where nonroutine cognitive tasks 
have become the most positive predictor of expo-
sure since the 2000s. Examples of occupations with 
a high degree of nonroutine cognitive tasks include 
education administrators, training and development 
managers, postsecondary teachers, and emergency 
management directors. The AI technologies also 
generally display a pattern of increasing correlation 
with offshorable tasks. In fact, in some technology 
categories, offshorable tasks have become one of the 
strongest predictors of exposure. This suggests that 
there might be growing application of these technolo-
gies to reduce the need for face-to-face interaction 
and working on-site, thus increasing the correlation 
with offshorable tasks. Examples of occupations with 
a high degree of potentially offshorable tasks include 
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FIGURE 7 

Relationship Between Exposure and Task Inputs over Time

NLP Planning and control Speech recognition

AI hardware Knowledge processing Machine learning

All patents Computer vision Evolutionary computation

1980 1990 2000 2010 2020 1980 1990 2000 2010 2020 1980 1990 2000 2010 2020

–0.2

–0.1

0

0.1

0.2

0.3

–0.3

–0.2

–0.1

0

0.1

–0.2

–0.1

0

0.1

–0.3

–0.2

–0.1

0

0.1

0.2

–0.4

–0.2

0

0.2

–0.4

–0.2

0

0.2

–0.2

0

0.2

–0.2

–0.1

0

0.1

0.2

–0.2

–0.1

0

0.1

Year

C
oe

f�
ci

en
t e

st
im

at
e 

an
d 

95
%

 c
on

�d
en

ce
 in

te
rv

al

Evolutionary computation

Occupation Task Inputs
Offshorable Routine cognitiveNonroutine manualNonroutine cognitive Routine manual

SOURCES: Author calculations using ACS, O*NET, Autor and Dorn (2013), AIPD, and USPTO data.
NOTE: This �gure shows the results of regressing occupation exposure (measured as cumulative exposure) on occupation task input
measure from Autor and Dorn (2013). Exposure is standardized as z-scores. Each point represents the estimates of a separate coef�cient, 
and the shaded region is the 95 percent con�dence interval. Regression results are estimated separately for each decade. 



20

creative writers, business intelligence analysts, econo-
mists, and biostatisticians.

Percentage of Jobs Exposed  
to Technology Patents

What percentage of jobs are exposed to technology 
patents? To answer this question, we define several 
categories of exposure based on each occupation’s 
cumulative exposure by 2020. For each technology 
category, we categorize occupations as being mildly 
exposed if the cumulative exposure is between the 
average and one standard deviation above the aver-
age; highly exposed occupations have a cumulative 
exposure of between one and two standard devia-
tions above the average; and extremely exposed occu-
pations have a cumulative exposure greater than 
two standard deviations above the average.9 Then, 
we calculate the share of job titles that fall into each 
exposure category. 

Table 3 displays the results. The first column 
displays the technology type, and the following col-
umns show the share of jobs that are in each category. 
The last column shows the total share of jobs with 
some degree of exposure. For example, we find that 
38 percent of jobs have some degree of exposure to 
all patents by 2020. Across technology categories, 
approximately 25 percent of jobs are mildly exposed 

to patents, on average. NLP technology has the high-
est share of mildly exposed occupations across the 
AI technology categories. Approximately 10 percent 
or fewer jobs are highly exposed to patents across 
technology categories, and even fewer are extremely 
exposed. Five percent of job titles are extremely 
exposed to all patents and to knowledge processing 
patents, and even fewer are highly exposed to other 
technologies. Overall, the results suggest that a sig-
nificant share of occupations have some exposure to 
technology patents, though most of the exposure is 
mild in relative magnitude.

Correlation Between Exposure, Wage, 
and Employment

In this section, we explore the relationship between 
an occupation’s exposure to technology patents and 
key labor market outcomes—wages and employment 
growth. Understanding these correlations is critical 
for evaluating the potential impacts of such new tech-
nologies as AI on workers. We analyze how exposure 
correlates with an occupation’s position in the wage 
distribution over time. This sheds light on whether 
low, middle, or high wage earners are most exposed. 
Next, we estimate regression models to test whether 
technology exposure correlates with employment 

TABLE 3

Share of Job Titles Exposed to Technology in 2020
Mildly Exposed Highly Exposed Extremely Exposed Total Exposure

All patents 0.25 0.08 0.05 0.38

Computer vision 0.20 0.06 0.04 0.30

Evolutionary computation 0.20 0.06 0.03 0.29

AI hardware 0.21 0.05 0.04 0.31

Knowledge processing 0.22 0.08 0.05 0.36

Machine learning 0.19 0.08 0.04 0.31

NLP 0.25 0.01 0.02 0.28

Planning and control 0.22 0.10 0.04 0.36

Speech recognition 0.19 0.02 0.02 0.22

SOURCES: Author calculations using O*NET, AIPD, and USPTO data.

NOTE: Exposure is measured using the cumulative exposure to patents between 1976 and 2020. Mildly exposed are occupations with an exposure 
between the average and one standard deviation above the average. Highly exposed are occupations with an exposure between one and two standard 
deviations above the average. Extremely exposed are occupations with an exposure greater than two standard deviations above the average. Total 
exposure is the sum of mildly, highly, and extremely exposed. 
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growth and whether this depends on the routine task 
intensity of an occupation. Connecting exposure to 
employment growth builds on prior research show-
ing that routine tasks are more susceptible to auto-
mation. Overall, analyzing the correlation between 
exposure and labor market outcomes provides indic-
ative evidence regarding how AI and automation 
might affect different types of workers and occupa-
tions. However, it is important to note these relation-
ships are correlational and not necessarily causal.

Using data from the decennial census and the 
ACS, we estimate the relationship between exposure 
and wages. We use decennial census data from 1980 
and 1990, and the 2000, 2019, and 2020 ACS survey 
waves. We collect these data from the Integrated 
Public Use Microdata Series (IPUMS) (Ruggles 
et al., 2022). Following Webb (2019) and Acemoglu 
and Autor (2011), we restrict the sample to work-
ers between 18 and 65 years old, and we calculate 
a labor-supply weight by multiplying the IPUMS 
survey person weight by the fraction of full-time 
work for each observation. We aggregate the data to 
the occupation level, meaning that our final measure 
is the number of full-time-equivalent employees per 
occupation. We also use the labor-supply weight to 
calculate the weighted average wage (in 2010 U.S. dol-
lars) for each occupation.10 

Wages

Figure 8 displays the relationship between cumulative 
exposure and wages in different time periods. In each 
subgraph, the x-axis is the occupations wage per-
centile, and the y-axis is the standardized (z-score) 
cumulative exposure as of the specific year. The fig-
ures show the LOESS plot fitted values and 95 per-
cent confidence intervals for 1980, 2000, and 2020. 
The first subgraph shows the relationship for all 
patents. In 1980, occupations just below the median 
wage were the most exposed, and those in lower and 
upper wage percentiles were relatively less exposed. 
However, in 2000, exposure of higher wage occu-
pations began growing; by 2020, the highest wage 
occupations were the most exposed. A similar pat-
tern emerges across AI technologies. By 2020, there 
is a positive correlation between an occupations wage 
percentile and its exposure. 

Employment

Next, we calculate the share of full-time equivalent 
employees that are highly exposed to technology. 
Here, we define a worker as highly exposed if the 
cumulative exposure of their occupation is at least 
one standard deviation above the average exposure 
for that technology and year. We then sum the total 
number of employees in highly exposed occupations 
and calculate the share of total employment that 
these exposed employees make up each year. 

Table 4 displays the results for 2019. We use the 
year 2019 to avoid any confounding issues in employ-
ment because of the COVID-19 pandemic, though 
the results are similar if 2020 is used as a comparison 
year instead. Technologies are shown in the first 
column and are ordered by the share of workers 
exposed in 2019. There is a wide range in exposure 
across technology categories. For instance, 15 percent 
of workers are highly exposed to planning and con-
trol technology patents in 2019, while only 2 percent 
of workers are highly exposed to evolutionary com-
putation technology patents. 

Correlation Between Exposure 
and Employment Growth

As a final exercise, we estimate a series of regressions 
aimed at understanding the relationship between 
exposure and employment growth. Specifically, for 
each technology category, we estimate the following 
regression:

 Δ  y  o  
1990−2019  =  β  1   +  β  2   exposur e  o  

2019  +  β  3   R  I  o   + 
                         β  4   (exposur e  o  

2019  * R  I  o  ) +  ϵ  o   ,

where  Δ  y  o  
1990−2019   is the percentage change in employ-

ment in occupation o between 1990 and 2019 and  
exposur e  o  

2019   is the cumulative exposure of occupation 
o in 2019, in z-scores. We also include the term  R  I  o    
from Autor and Dorn (2013), which is the routine-
intensity index score of occupation o. We use 1990 
as a base year because several occupations enter the 
census data between 1980 and 1990, so there are 
more occupations for which we have employment 
data in later census years. However, the results are 
generally consistent if 1980 is used as a base year 
instead. We calculate the routine intensity as the sum 



22

dependent variable. Each column represents the results 
from a separate regression that is estimated using 
exposure data for a specific technology category.12

We find that, in general, increased exposure to 
technology has a mixed relationship with employ-
ment growth over this period, which is consistent 
with technology sometimes complementing human 
work and sometimes substituting for it. For example, 
increased exposure to evolutionary computation, 
NLP, and speech recognition technology are all 

of the routine cognitive plus routine manual task 
inputs, minus the sum of nonroutine cognitive and 
manual task inputs.11 This routine-intensity variable 
is also measured in z-scores. Lastly, we include an 
interaction term  exposureo

2019  * R  Io   , which captures the 
additional response of employment growth to expo-
sure at different levels of routine intensity. We allow 
the errors to cluster at the occupation level.

Table 5 displays the results from estimating 
the regression using the change in employment as a 

FIGURE 8

Relationship Between Exposure and Wages

SOURCES: Author calculations using ACS, O*NET, AIPD, and USPTO data.

NOTE: This �gure shows the LOESS regression of cumulative exposure on wage percentiles. Cumulative exposure is calculated in 1980, 2000, and 2020 and 
standardized in z-scores. Occupation wage percentiles are calculated using the employment-weighted mean hourly wage by occupation in the ACS. Wages 
are in 2010 U.S. dollars. 
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Conclusion

This project aims to identify occupations exposed to 
AI technologies. To achieve this, we use an NLP text 
similarity algorithm between patent titles and job 
task descriptions. The algorithm matching is based 
on the contextual basis and uses the BERT LLM that 
is fine-tuned to patent data. The matching between 
patents and occupational tasks worked well for most 
occupation tasks within our predefined cosine simi-
larity threshold of 0.75 and 0.80. The matching was 
done for both the full patents granted from 1976 to 
2021 and an AI patent dataset, which categorizes 
patents into eight different AI topics. 

We evaluate the exposure to multiple categories 
of AI technologies over the past several decades and 
estimate how exposure correlates with employment 
growth. We find that many occupations are exposed 
to AI but that exposure varies over time, across occu-
pation groups, and between technology categories. 
Overall, we find that occupations that require more 
education, pay higher wages, and involve more-
routine tasks tend to be more exposed to AI tech-
nologies. We also estimate that technology exposure 
is positively correlated with employment growth in 
some instances, but that this correlation is negative 
for more-routine occupations. 

The result of our regression analysis that looks at 
the relationship between exposure and employment 
growth suggests that AI might play a nuanced role 
in the labor market as firms continue to adopt new 

positively correlated with employment growth. We 
do not find a statistically significant relationship for 
other technologies.

We also find that more routine-intensive occu-
pations saw employment declines over this period. 
In general, a one standard deviation increase in the 
routine intensivewness of an occupation is associated 
with approximately a 25 percent decline in employ-
ment growth, holding exposure constant. For con-
text, a one standard deviation increase in the routine 
intensiveness of an occupation is approximately 
equivalent to going from the routineness of an indus-
trial machine repairer to that of a cashier.

Finally, the estimate of the coefficient on the 
interaction term suggests that, in some instances, 
the correlation between technology exposure and 
employment growth depends on the routine inten-
siveness of the occupation. Specifically, exposure 
to NLP, speech recognition, computer vision, and 
evolutionary computation technology patents are 
negatively correlated with the change in employ-
ment growth for more routine-intensive occupations. 
For example, for an occupation that is two standard 
deviations more routine-intensive than the average 
occupation, an increase in NLP exposure is associ-
ated with a net decline in employment growth of 
16 percent. 

TABLE 4

Share of Full-Time-Equivalent Employees Exposed to Technology in 2019
Share of Workers Highly Exposed in 2019

All patents 0.15

Computer vision 0.09

Evolutionary computation 0.02

AI hardware 0.07

Knowledge processing 0.14

Machine learning 0.10

NLP 0.04

Planning and control 0.15

Speech recognition 0.05

SOURCES: Author calculations using O*NET, AIPD, USPTO, and ACS data.

NOTE: This table shows the share of full-time equivalent workers between the ages 18 and 65 exposed to technology in 2019. Exposure is measured as 
the cumulative exposure each year, and we characterize an occupation as highly exposed if the exposure is greater than one standard deviation above 
the average for that technology and year.
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exposure to technology patents is a useful starting 
point for understanding the potential impact of AI 
on the labor market, a variety of factors can influ-
ence actual labor market outcomes.

Additionally, we do not analyze how the task 
content within occupations evolves over time in 
response to technology. Occupations might become 
less routine as technology automates away some tasks 
and frees workers to focus on more abstract tasks 
that cannot be automated. Similarly, new tasks might 
be added to occupations in response to technology. 
Additional research is needed to understand how AI 
might shift the composition of work within occupa-
tions. As a result, our analysis does not imply that 
there is a direct, causal relationship between patent 
exposure and employment growth, shifts in educa-
tional requirements, or changes in the wage distribu-
tion. Instead, our results should be considered correl-
ative because there are many dimensions over which 
occupations, tasks, and workers might respond to 
technology exposure. Future research should address 
these margins of adjustment and, in particular, assess 
the extent to which the labor market response to 
technology is driven by changes across occupations 
or changes within occupations. 

Lastly, the patent-task matching algorithm could 
be improved to produce more-accurate and more-
relevant matches. This could involve bringing in 

AI tools, and its effect on workers might depend on 
the types of skills and tasks the worker typically per-
forms. For instance, we find that greater exposure to 
some AI technologies is associated with employment 
growth for relatively less routine-intensive occupa-
tions. At the same time, we find that greater AI expo-
sure is associated with slower employment growth—
and even employment declines—in occupations that 
tend to be relatively more routine-intensive. However, 
the nature of the relationship between AI exposure 
and employment might change in the future as new 
tools are developed that are better able to perform 
nonroutine tasks.

There are several limitations of our analysis. 
First, although exposure to technology patents can 
offer insights into the potential impact of AI on 
different occupations, it is not a perfect measure 
of the actual risk of displacement or job loss. For 
instance, some jobs that are highly exposed to tech-
nology patents might require social or emotional 
intelligence that AI is currently unable to replicate, 
making those jobs less susceptible to automation. 
Moreover, exposure to AI technology does not 
necessarily translate into a risk of displacement. In 
fact, if AI technologies reduce the cost of acquiring 
workers with expertise, it might enable employers to 
expand and create new job opportunities and result 
in an increase in labor demand. Therefore, although 

TABLE 5 

Results from Regressing Employment Growth on Exposure and Routine Intensity

All 
Patents

Computer 
Vision

Evolutionary 
Computation

AI 
Hardware

Knowledge 
Processing

Machine 
Learning NLP

Planning 
and 

Control
Speech 

Recognition

exposureo
2019 0.05  –0.02  0.09**  0.02  0.07  0.09  0.20***  0.07  0.17*** 

(0.05)  (0.07)  (0.04)  (0.10)  (0.06)  (0.12)  (0.08)  (0.04)  (0.04) 

RIo –0.27***  –0.27***  –0.28***  –0.27***  –0.25***  –0.24***  –0.25***  –0.26***  –0.25*** 

(0.05)  (0.06)  (0.05)  (0.06)  (0.05)  (0.06)  (0.05)  (0.05)  (0.05) 

exposureo
2019*RIo –0.05  –0.12*  –0.24*  –0.02  –0.05  –0.04  –0.18**  –0.05  –0.14*** 

(0.04)  (0.07)  (0.13)  (0.07)  (0.05)  (0.08)  (0.08)  (0.04)  (0.04) 

Observations 261 261 261 261 261 261 261 261 261

Adjusted R2 0.11 0.12 0.13 0.11 0.12 0.13 0.14 0.12 0.15

SOURCES: Author calculations using O*NET, USPTO, AIPD, ACS, and Autor and Dorn (2013) data.

NOTE: Patent exposure is measured as the cumulative exposure by technology type in 2019 and routine intensity is measured as the relative importance 
of routine tasks to nonroutine tasks in an occupation. The constant term was estimated but not shown in the table. Errors in the table allow for clustering 
at the occupation level.  
* Significant at the 10 percent level, ** significant at the 5 percent level, *** significant at the 1 percent level. 
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additional data on job tasks, such as data acquired 
from the Occupational Requirements Survey from 
the Bureau of Labor Statistics, to supplement tasks in 
the O*NET. Similarly, supplementing task data with 
other O*NET datasets on work activities, work styles, 
and work skills could provide more information 
for the algorithm to draw from. Finally, additional 
subsets of the patent data, such as those for robots or 
LLMs, could provide a more detailed picture of tech-
nology exposure.

Abbreviations

ACS American Community Survey

AI artificial intelligence

AIPD Artificial Intelligence Patent Dataset

BERT Bidirectional Encoder Representa-
tions from Transformers

GPT-4 Generative Pre-trained Transformer 4

LLM large language model

LOESS locally estimated scatterplot 
smoothing

NLP natural language processing

O*NET Occupational Information Network

USPTO U.S. Patent and Trademark Office

Notes
1  NLP is a field of AI that focuses on enabling computers to 
understand, interpret, and generate human language in similar 
ways to humans.
2  These AI technologies are defined in the section on datasets 
that follows.
3  GPT-4 is the fourth installment of OpenAI’s LLM. According 
to OpenAI, it can take both texts and images as input, process 
them, and achieve human-level performance in many profes-
sional and academic settings.

LLMs are a subset of what are called foundational models, 
which are millions and billions of parameter models that are 
broadly trained on large datasets and can be fine-tuned to per-
form many downstream tasks (Bommasani et al., 2022). LLMs 
are trained on large sets of online texts and books from which 
the model learns patterns in a written language. Then, the 
models are optimized for certain tasks, such as text classification, 
summarization, or generation.
4  Transformers are a type of neural network architecture 
designed for sequence modeling that is made up of a stack of 
self-attention layers (Tunstall, von Werra, and Wolf, 2022). Each 
token in a transformer sequence is similar to a word in a book. 
The attention mechanism allows each token to “look back” at the 
other tokens in the sequence to see whether there is any context 
that could help the token in question understand its meaning. 
It is no different than when someone is reading a book and they 
come across a word they do not quite understand: They might 
look at the previous words or sentence to understand the context 
that would help them understand what is being talked about. 
In this way, attention allows transformers to learn long-range 
dependencies in text.
5  We also explored using patent titles and abstracts for the 
matching process. In theory, more input text could allow for 
better patent-task matches. However, we did not find that the 
matches with the patent titles and abstracts were meaning-
fully different from those generated with just the patent titles. 
Additionally, the empirical analysis that follows did not differ 
in a meaningful way when using the matches with titles and 
abstracts.
6  In assessing the quality of matches, we used the cosine simi-
larity as a determining factor. After observation and analysis, 
a value of 0.75 was selected, resulting in a combination of both 
good and subpar matches. It is important to note that the clas-
sification of a “good” match was based solely on our own judg-
ment. We also assessed match quality with a cosine similarity of 
0.80. This threshold resulted in better-quality matches but fewer 
overall matches. It should be noted, however, that the results of 
the analysis remained similar regardless of whether a matching 
threshold of 0.75 or 0.80 was utilized.
7  O*NET importance scores are all rated on a 1 (low impor-
tance) to 5 (high importance) scale. When surveyed, respondents 
are asked to rate the importance of different tasks based on a 
common Likert scale.
8  O*NET provides additional data on the importance of differ-
ent skills to each occupation. Similar to task ratings, skill impor-
tance ratings are measured on a 1-to-5 Likert scale. 
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About This Report
The rapid development of artificial intelligence (AI) has the potential to 
revolutionize the labor force with new generative AI tools that are pro-
jected to contribute trillions of dollars to the global economy by 2040. 
However, this opportunity comes with concerns about the impact of AI 
on workers and labor markets. As AI technology continues to evolve, 
there is a growing need for research to understand its implications for 
workers, firms, and markets. In this report, we aim to address this press-
ing need by exploring the relationship between occupational exposure 
and AI-related technologies, wages, and employment. 

Using natural language processing (NLP) to identify semantic 
similarities between job task descriptions and U.S. technology patents 
awarded between 1976 and 2020, we evaluate occupation exposure to all 
technology patents in the United States and to specific AI technologies, 
including machine learning, NLP, speech recognition, planning and con-
trol, AI hardware, computer vision, and evolutionary computation.

Our findings suggest that exposure to both general technology and 
AI technology patents is not uniform across occupational groups, over 
time, or across technology categories. We estimate that up to 15 percent 
of U.S. workers were highly exposed to AI technology patents by 2019 
and find that the correlation between technology exposure and employ-
ment growth can depend on the routineness of the occupation. This 
report contributes to the growing literature on the labor market impli-
cations of AI and provides insights that can inform policy discussions 
around this emerging issue.
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